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APPENDIX: ONLINE RESOURCES
A  RELATED SURVEYS

Over the past two decades, the development of infectious disease modeling has been thoroughly
reviewed by several researchers. For instance, Grassly and Fraser [237] analyzed the connection
between mathematical hypotheses and modeling design in the context of infectious disease trans-
mission, summarizing key contributions to the field. In recent years, some surveys have focused
on models for specific types of infectious diseases, such as malaria [246], dengue [229], influenza
[231, 249], and COVID-19 [227, 232]. Thereinto, Mandal et al. [246] and Andraud et al. [229] provided
insights into deterministic mathematical approaches (also known as mechanism-based models) for
modeling malaria and dengue transmission, respectively, linking the development of these models
to the propagation of theories on disease spread. These reviews have covered several areas, such
as population-level compartmental models (also known as mass-action compartmental models),
structured metapopulation models, and agent-based models. However, they did not give substantial
attention to machine learning models, which have seen rapid development recently. Different from
the above three surveys, Nsoesie et al. [249] and Chretien et al. [231] examined a broader range of
models for influenza forecasting, including mechanism-based, statistical, and data-driven models.
The most current surveys by Adiga et al.[227] and Clement et al. [232] concentrated on COVID-19
models, with Adiga et al. [227] categorizing them into statistical, mechanism-based, and hybrid
models, while Clement et al. [232] offered a finer classification that included machine learning
and deep learning approaches. Despite the comprehensive categories in [227, 232], they primarily
focused on mechanism-based and statistical models, providing limited coverage of recent epidemio-
logically inspired machine learning models. Rodriguez et al. [253] summarized the extensive data
sources available for epidemic forecasting and introduced various models, including data-driven,
deep learning, and hybrid models that combine epidemiological principles with statistical methods.

B METHODOLOGY FOR LITERATURE SEARCH

In this section, we describe the process we employed to select the relevant publications for our
survey.

B.1 Search Scope and Methods

Machine learning for infectious disease risk prediction is an interdisciplinary research topic, crossing
the fields of public health and machine learning. To establish a foundation in this area, we conducted
a comprehensive literature review using the PubMed database, with a search cutoff date of July 20,
2024. Our systematic search strategy employed a combination of keywords: ("infectious disease
risk" OR endemic OR epidemic OR pandemic) AND (prediction OR forecasting OR nowcasting)
AND ("machine learning" OR "artificial intelligence" OR algorithm OR modeling). This approach
aimed to capture relevant studies at the intersection of machine learning and infectious disease risk
prediction. Given the substantial volume of literature—approximately 18, 878 papers containing
our search terms in their full texts—we refined our initial selection to include only those papers
that contained these keywords within their titles and abstracts, ensuring a focused and relevant
collection for review. In this step, we identified 2, 240 publications by searching in the PubMed
database.

Given that (1) publications included in the PubMed dataset mainly focus on journals and topics
related to public health, which may not capture the full breadth of machine learning research, and
(2) our keyword-based search strategy, while comprehensive, cannot guarantee the inclusion of all
publications relevant to machine learning for infectious disease risk prediction, we supplemented
our search with a manual review. This involved examining personal bibliographies, tracking outputs
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Fig. 3. Literature search flow.

from leading research groups, and searching publications from top-tier journals and conferences in
artificial intelligence and machine learning. This rigorous approach was utilized with the intention
to include a more comprehensive range of significant contributions to the field. After removing the
duplicates between the identified publications from PubMed and those from manual searching, we
retained 2, 304 publications for title and abstract review.

B.2 Selection Criteria and Results

Our first screening phase involved a thorough review of the titles and abstracts to decide whether
they aligned with our inclusion and exclusion criteria. This step determined their suitability for
a more in-depth full-text review. To maintain the relevance and specificity of our survey, which
is focused on machine learning for infectious disease risk prediction at the human population
level, we designed a set of exclusion criteria to exclude irrelevant publications. The criteria are
categorized into two primary categories:

(1) Irrelevant Topics:
o Studies on infectious diseases not affecting human populations.
o Works focused on disease diagnosis or drug design.
e Research on health risks at the individual level resulting from infectious diseases, such as:
— Clinical risks like ICU demand, hospitalization and severity predictions for COVID-19,
and patient mortality.
— Psychological impacts, including online behavior related to seeking psychological help
and mental health disorders.
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— Opioid overdose fatalities.
— Social consequences for individuals infected with COVID-19.
(2) Irrelevant Computational Models:

o Predictions or simulations related to the effects of interventions.

e Comparative studies between well-known existing methodologies.

e Models not associated with machine learning algorithms, such as:
— Approaches based on dynamic systems and control theory.
— Purely statistical or mathematical equation-based models, and optimization methods

exclusively.

According to the above criteria, we excluded 2, 049 publications. This left us with a subset of
255 publications for full-text review. Subsequently, we implemented further exclusion criteria, as
shown below, to ensure each study’s eligibility for our survey:

e Inaccessibility to the full article text.

Case studies merely testing pre-existing methods or comparative analyses.

Studies where the methodological details were unrelated to machine learning models.
Research that did not contain outcomes related to disease risk prediction.

Studies that did not employ standard evaluation metrics to assess the performance of their
proposed methods.

Upon completion of this rigorous selection process, we included a total of 169 publications, in
our survey for comprehensive classification and discussion. The entire literature search workflow
is illustrated in Figure 3.

C PRELIMINARY INTRODUCTION TO PURE EPIDEMIOLOGICAL AND STATISTICAL
MODELS

C.1 Introduction to Epidemiological Models

In the 20th century, many epidemiological models were developed to mathematically depict the
process of infectious disease transmission based on the understanding and knowledge of disease
characteristics and transmission modes. In these models, a studied population is usually divided
into several compartments representing different disease statuses, and a set of rules is designed
to describe the transition between these statuses. These models can be subdivided based on the
granularity level of modeling (from coarse to fine) into three types [227, 244]: (1) compartmental
models at the population level; (2) compartmental models at the meta-population level; and (3)
agent-based models at the individual level.

C.1.1  Population Level Models. Compartmental models at the population level usually include a
set of differential equations (DEs) that depict the dynamics of state variables and thereby quan-
titatively represent disease risk. These models comprise a representative and classical group of
epidemic models that are used to mathematically depict disease transmission. Various DEs have
been developed for a wide range of infectious diseases, such as influenza, malaria, dengue, Aids,
and COVID-19. These models assume that a disease transmission environment is homogeneous, i.e.,
individuals are mixed evenly within the environment and those with the same status have the same
probability of moving from their current status to another status. In the following, we introduce
various compartmental models at the population level that have been constructed for diseases that
propagate in different ways, e.g., respiratory diseases and vector-borne diseases. The susceptible—
infected-recovered (SIR) model is a classic compartmental model [242]. It has a simple structure
with three statuses (susceptible, infected, and recovered) and two parameters (effective contact rate
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p and recovery rate y), and is widely used to model the dynamics of infectious diseases [255], espe-
cially respiratory diseases, such as influenza, ILI, and COVID-19. Following the development of the
SIR model, many other compartmental models with more sophisticated structures were designed to
describe more complex scenarios, such as susceptible-exposed-infected-recovered (SEIR) models,
which consider the latent period of a disease [238, 243] and use the parameter f§ to represent the
probability of an individual entering the incubation period after being in contact with an infectious
individual, and the parameter « to represent the probability of an individual leaving the latent
period; and the susceptible—exposed—-infected—recovered—death (SEIRD) model [247, 251], which
considers deaths due to disease. Many variations of compartmental models have been developed
for vector-borne diseases, such as malaria and dengue, to depict disease transmission between
vectors (e.g., mosquitoes) and humans [229, 246]. For instance, the Ross model [254] is the most
fundamental model to describe vector-borne diseases, while the Macdonald model [245] is based
on the Ross model but also considers the latent status of vectors. In addition to considering the
latent status of vectors, the Anderson and May model [228] considers the latent status of humans,
and susceptible-latent-infected-recovered (SLIR) models [258, 259] consider the recovered status
of humans in terms of acquired immunity.

C.1.2  Meta-population Level Models. Sometimes, the homogeneous-mixing assumption in popula-
tion level models does not accurately reflect the actual situation of disease transmission because
individuals in a host group may have different characteristics, such as different susceptibilities to
disease and abilities to recover from infection. These characteristics significantly influence disease
spread throughout a population and also determine how epidemic interventions should be enacted.
Therefore, in addition to models based on the assumption that disease spreads occurs in a homoge-
neous environment (i.e., that individuals have the same probability of coming into contact with
each other and of moving from one status to another), many models—i.e., compartmental models
at the meta-population level—have been developed that are not based on this assumption; instead,
they are based (to some extent) on a heterogeneous assumption. Studies have divided populations
into subgroups and designed model structures according to different population properties, such as
age structures [230, 236], geographical distributions [233, 250, 252], and human behavioral patterns
[241].

C.1.3 Individual Level Models. As mentioned, epidemiological models at the meta-population level
consider the heterogeneity of subgroups of a whole population. However, their characterization
of the heterogeneity of population traits is still limited because of the low resolution of subgroup
partitions. Contact between hosts and hosts, or between hosts and vectors, is the natural way in
which infectious diseases are transmitted in the real world. Thus, agent-based models (ABMs) are
usually built on a network constructed at the individual level and simulate interactions between
individuals, such that they model disease transmission in more realistically than epidemiologi-
cal models at the meta-population level. EpiSims, proposed by Eubank et al., is an agent-based
simulation tool for modeling disease spread caused by human mobility [235]. EpiSims simulates
the physical contact patterns of humans by constructing a bipartite social contact network that
consists of two types of vertices: individual vertices and location vertices. Compared with the
results of compartmental models at the population and meta-population levels, the simulations
generated by agent-based models are closer to the real-world situation because the characteristics
of these models’ networks are similar to those of real networks. Similarly, Hoertel et al. developed
a stochastic agent-based microsimulation model for modeling the COVID-19 epidemic in France
[240]. The two above-described studies show that fine-grain agent-based models enable the flexible
setting of interventions and can help to reveal potentially effective intervention strategies.
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C.2 Introduction to Time-series Statistical Models

Some classic statistical models for time-series prediction are based on linear model structures, such
as autoregressive (AR) models, which linearly combine past observations within a time window
p (e, x¢—1,%;-3,* -, X;—p) with the disturbance term E; (the equation of AR model is shown in
Eq. (S1) [42]); moving average (MA) models, which complement AR models by linearly combining
disturbance terms within a time window q (i.e., E;, E; 1, - - , E;—4) (the equation of MA model is
shown in Eq. (S2) [42]); and their combination, known as autoregressive moving average (ARMA)
models (the model equation is shown in Eq. (S3) [42]), which characterize the features of single
time-series dynamics to forecast future trends [42, 106].

YOor Xy = a1Xp—1 + QoXp—p + -+ ApXy—p + Ey (S1)
yorxtzEt+ﬁ1-Et_1+---+ﬁq-Et_q (SZ)
Yorx; = aiXe_q1+- - +apXe—p+Er+PiE g+ + BeEr g (S3)

However, the above-mentioned classic statistical models can only be applied to time series that are
stationary, and so cannot be applied in many situations, as time series are often non-stationary due
to the effects of seasonal factors, persistent interventions, or other determining factors. Therefore,
variations of the above-mentioned models have been proposed to cope with these situations. For
example, autoregressive integrated moving average (ARIMA) models [42] remove obvious trends
(such as upward or downward trends)—which are caused by determining factors—by using d-order
differencing processes. This affords stationary time series, to which ARMA models can be applied.
Seasonal ARIMA (SARIMA) models [42] remove the effects of seasonality by performing lagged
differencing processes with a period s. Another variation of the AR model is the autoregressive
exogenous (ARX) model. The ARX model also uses disease dynamics data to make predictions but
takes other risk-related factors into account; these factors are denoted extra or exogenous variables
and formulated as a weighted sum item that is in addition to the original weighted sum item.

D COMPLEMENTED LITERATURE SUMMARY
D.1 Deep Learning for Modeling Intrinsic and Complex Transmission Patterns

D.1.1 LSTM. The LSTM model is a type of recurrent neural network (RNN) which is designed
for capturing the long-term dependency from time-series data [239]. Venna et al. proposed an
LSTM-based deep learning model that consists of multiple LSTM cells sequentially stacked over
time [177]. In the sequential structure, every LSTM cell takes two inputs (except the first cell, which
only takes the dynamic data as input): the dynamic data at a single time point and the output of
the previous cell, to generate a prediction for the next time step. That study also examined the
effects of climate variables by applying the symbolic time-series approach and the effects of regions
with geographical proximity by applying weighted summation to adjust the output of an LSTM
to generate the final prediction. In addition, multivariate LSTM (M-LSTM) model developed by
Nikparvar et al. [114] and Qu et al. [132] aimed to deal with multi-variate time series including
other disease-related factors, such as human mobility and human interventions, to improve the
prediction of spatiotemporal disease risks. Vadyala et al. proposed a K-means-LSTM model that
uses the K-means algorithm to group time series data with similar patterns in different regions and
employed the LSTM to capture the temporal dependency and make predictions [176].

D.1.2  GNNs. The spectral temporal graph neural network (StemGNN) [25] uses a graph convoluti-
onal network (GCN) structure to model temporal dependency and inter-series correlations to predict
newly confirmed COVID-19 cases. Specifically, instead of modeling the time series in the time
domain, it utilizes the graph Fourier transform (GFT) to model inter-series correlations within
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the spectral domain and the discrete Fourier transform (DFT) to model intra-series temporal
correlations within the frequency domain, and then feeds the representation of correlations into a
GNN.

D.1.3 CNNs + RNNs. Xie et al. proposed inter- and intra-series embeddings fusion network
(SEFNet), which includes two parallel modules to capture the cross-regional and inner-regional
dependency by the multi-scale unified convolution component with the attention mechanism
and LSTM network separately [200]. Utku et al. also proposed a hybrid deep learning model that
incorporates the CNN and GRU modules for capturing spatial and temporal patterns, respectively
[175].

D.1.4 GNNs + Others. In the cross-location attention-based GNN (ColaGNN) [41], the RNN
modules extract temporal dependencies from historical disease trends, and location-aware attention
is used to infer the spatial influence between different regions from these learned hidden features.
Furthermore, a dilated convolution module is employed to learn attributes for each location from
historical trends, thereby capturing multi-scale local temporal dependencies. Based on the learned
spatial dependencies (serving as the network structure) and temporal dependencies (serving as
node attributes), a graph message-passing mechanism is used to integrate the spatiotemporal
information, which is then used to generate ILI predictions. The hierarchical spatial-temporal
framework (HierST) [221] includes a temporal module that combines two time-series architectures—
the long- and short-term time series network (LSTNet) and the neural basis expansion analysis for
time series (N-BEATS)—to model temporal dependency; and a spatial module that contains the gated
EdgeGNN, which adaptively adjusts the connections of edges, and the NodeGNN, which learns the
representation of node features. The novelty of this approach is also reflected by the introduction
of prior knowledge of common sense to constrain the model inference. Specifically, given that the
predictions for different administrative levels (i.e., country, state, and county) should be close to
each other, they designed a consistency optimization objective that includes items representing
the difference between predictions at different spatial scales in addition to the difference between
ground truth and predictions. The epidemic forecasting model based on functional neural process
(EPIFNP) proposed by Kamarthi et al. [72] also includes temporal and spatial modules, which
are implemented by a probabilistic neural sequence encoder and a stochastic correlation graph,
respectively. Instead of generating point estimates of forecast value, the EPIFNP model generates
the probability distribution of prediction via a probabilistic generative process model to evaluate
the uncertainty of prediction. The spatio-temporal attention-based neural network (STANN)
proposed by Lv et al. captured the dynamic spatiotemporal disease risk patterns using temporal
attention modules and graph attention networks (GAT) [108]. The spatial-temporal synchronous
graph transformer network (STSGT) proposed by Banerjee et al. also integrated the attention
mechanism with GNN module [17]. The EpiGNN proposed by Xie et al. consisted of different
deep learning modules to capture the temporal and spatial patterns, and its modeling is also
mainly based on graph-structured dependencies [199]. They designed local transmission risk (LTR)
encoding and global transmission risk (GTR) encoding modules to capture the spatial effects from
regions surrounding and far away. Besides, they introduced the region-aware graph learner (RAGL)
module to fuse different kinds of information learned, i.e., temporal encoding, local transmission
encoding, and global transmission encoding. The STGCN proposed by Sasikumar et al. stacks
multiple spatio-temporal attention convolutional (STAConv) modules. The STAConv module is
designed for capturing the spatial and temporal dependencies by two temporal gated convolutional
layers and one spatial graph convolutional layer, respectively, and includes a multi-head attention
mechanism to merge these dependencies for prediction [152]. The graph attention-based sapatial
temporal (GAST) model proposed by Zhu et al. has a similar architecture with the ColaGNN model

ACM Comput. Surv., Vol. 37, No. 4, Article 111. Publication date: August 2025.



111:42 Liu et al.

[41] but replaced the graph passing component with a GAT module [224]. Liu et al. incorporated
the GRU with the GNN to develop the GRGNN module, which extracts the features from spectral,
frequency, and time domains based on the combination of GFT, DFT, and GRU modules [99].

D.1.5 Other Machine Learning Techniques. In the context of disease risk prediction, Liu et al.
introduced a model that leverages matrix profile—an unsupervised learning technique—to segment
and cluster time series data based on similarity [98]. This clustering informs an attention-based
LSTM model within an encoder-decoder setup to predict disease dynamics. Lin et al. presented a
self-supervised message-passing neural network (SMPNN) that employs message passing in graph
structures to embed features from spatial information and web search data in a self-supervised
manner, facilitating the prediction of local disease incidence with these cross-location patterns
[94]. Wu et al. developed an online multi-task regression algorithm that captures the spatial and
temporal dependencies by the multi-task chain structure and the lag time series, respectively,
and detects the concept drift by Hoeffding tree and adaptive windowing (ADWIN) drift detector
[198]. DeepCOVIDNet, developed by Ramchandani et al., combines an embedding module to
integrate diverse risk data from multiple regions with a DeepFM module—a neural network based
on factorization machines—to address dependencies among embeddings [135]. Akhtar et al. adopted
the nonlinear autoregressive models with exogenous inputs (NARX) neural network, incorporating
multilayer perceptron (MLP) with the ARX to predict disease risk over time and space based on
heterogeneous risk-related data [7]. A recent work by Papagiannopoulou et al. introduces the
regional influenza-like-illness forecasting (ReILIF) method, which uses the LSTM to encode the
temporal dependency and intermediate fusion networks (IFNs) to integrate multi-modal data
[123]. The fusion mechanism proposed in this study is able to integrate exogenous data to produce
informative representations. Moreover, its flexibility allows for further generalizations, facilitating
the development of advanced risk prediction models with heterogeneous risk-related data.

D.2 Epidemiological Parameter Inference From Data

D.2.1  Data Assimilation. In a set of data assimilation models used for epidemic prediction, the
Kalman filter (KF) [257] and its variants (such as ensemble adjustment Kalman filter (EAKF) [11]),
as well as particle filter (PF) [13] methods, have been used to estimate model statuses. Yang et al.
developed a forecast system, which is based on KF/PF and a simple SIR model, to predict irregular
non-seasonal influenza epidemics in Hong Kong from January 1998 to December 2013 [206]. Pei et al.
developed a model-data assimilation framework based on a metapopulation compartmental model to
accurately predict the spatial spread of influenza [126]. In this metapopulation compartmental model,
which is based on a humidity-driven SIRS model [159] that they had used in their previous studies
[156, 157][260], they divided a population into different groups in terms of geographical locations
(i-e., different states), and incorporated two types of human mobility (i.e., fixed commuting flows
and irregular movement of visitors). Zeng et al. developed a forecasting approach by integrating a
meta-population mosquito-borne SIR model with an EAKEF, to predict dengue fever dynamics across
twelve cities in Guangdong Province, China [209]. Sebbagh et al. proposed to use the extended
Kalman filter (EKF) to estimate the parameters in SIRD model [154]. Dukic et al. extended the SEIR
model to the state-space framework to enable better characterization of temporal changes in the
dynamics and estimated its parameters by a particle filtering algorithm [47].

D.2.2 GLEaM Simulation-based Methods. In [212], firstly, initial infection estimates are derived
from Twitter microblogging data and traditional surveillance sources. Secondly, epidemiological
parameters are calibrated through Monte Carlo simulations within a four-dimensional parameter
space, using selected sampling points, while the GLEaM model is used to generate disease spread
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simulations. Lastly, the most accurate models are identified using a multi-model inference strategy
that minimizes information loss, as quantified by the Akaike information criterion.

D.2.3 MSE Loss-based Models. Sun et al. proposed the dynamic-susceptible-exposed-infective-
quarantined (D-SEIQ) model [168], estimating key epidemiological parameters such as the basic
reproduction number and incubation period using the MSE loss functions for long-term prediction
of cumulative COVID-19 case numbers. Wang et al. formulated a similar loss based on MSE to
estimate the parameters of epidemiological models. Based on this loss function, they formalized the
learning procedure as the AutoODE algorithm, which infers the model parameters of mechanism-
based models by an automatic differentiation method [189]. In addition, based on a case study on
the forecasting of COVID-19 dynamics, they proposed the spatiotemporal SUEIR model, which is an
extension of the SUEIR model [226] that better models spatiotemporal patterns of COVID-19 spread.
Liao et al. introduced the time window-based SIR model (TW-SIR), which effectively captures
variations in two critical epidemiological parameters—the basic reproduction number and the
exponential growth rate—of COVID-19 dynamics [93]. These parameters, which were reflected by
the infection and recovery/death rates, were estimated using a polynomial regression algorithm.
Zhao et al. proposed an algorithm, combining the logistical model and SEIR model to estimate and
adjust the epidemiological parameters to make more accurate predictions by fitting the logistic
function [217]. Wang et al. proposed three generalized boosting machine learning (GBM) models to
analyze and estimate the transmission rate from the public health policies and mobility data based
on a susceptible, exposed, symptomatic infected, asymptomatic infected, Removed (SEIAR) model
[191]. Camargo et al. developed an incremental learning approach, which is based on a dynamic
ensemble method trained by bagging scheme, to build predictive models for SEIRD variables in the
context of COVID-19 [24]. Mallick et al. focused on a meta-population SEIR model that divides
the population into sixteen subgroups according to the geographical locations of sixteen states
in India, with model parameters being adeptly adjusted using the least absolute shrinkage and
selection operator (LASSO) algorithm [109]. Krivorotko et al. proposed an algorithm for automatic
calibration. The algorithm optimizes the parameters by minimizing the difference between the
observed data (ground truth) and the values generated by an ABM that describes the COVID-19
transmission dynamics [86].

Zhang et al. applied an LSTM model to predict the epidemiological parameters of a modified
susceptible-infected-quarantined-recovered (SIQR) model [211]. Khan et al. incorporated the im-
pacts of eight COVID-19 interventions into a suspected-infected-quarantined-removed-deceased
(SIQRD) model, introducing the modified SIQRD (m-SIQRD) model [78]. They utilized an attention-
based machine learning approach with a CNN-GRU architecture to calibrate the model’s parameters
and employed generative adversarial networks (GANSs) for data augmentation to enhance predic-
tions. Feng et al. leveraged both LSTM and GRU models to estimate parameters in the SEIR model
[50]. Nguyen et al. proposed the BeCaked model, which uses the combination of the LSTM model
and variational autoencoder (VAE) to predict the parameters of the SIRD model [113]. Ding et al.
introduced the back-projection infected—susceptible-infected-based LSTM (BPISI-LSTM) model,
showcasing the application of LSTM networks in epidemiological modeling [44]. Jung et al. used
FNN s to parameterize the parameters of a new SIR model with time-dependent parameters [69].
Liu et al. proposed an SIRV model, where ‘V’ denotes the population that has completed the whole
vaccination process. Then, they adopted five methods, including NAR, LSTM, ARIMA, Gaussian
function, and the polynomial function, to estimate the daily varying transmission rate of this model
[100].

ACM Comput. Surv., Vol. 37, No. 4, Article 111. Publication date: August 2025.



111:44 Liu et al.

D.3 Epidemiological Mechanism-guided Models

D.3.1  Non-linear Models. Zhu et al. developed a transmission model for dengue that integrates prior
knowledge from various aspects of disease spread, including the infectious bites from mosquitos
to humans, human mobility, and the potential infectivity of mosquitoes, and they employed epi-
demiological indicators (i.e., VCAP and EIR) to better characteristic the dengue transmission [223].
Shi et al. constructed a nonlinear stochastic model that also utilizes VCAP and EIR for its formu-
lation [162]. In addition, when considering the effects of cross-regional transmission, they used
a periodic function to depict the periodic transmission patterns. Thus, their nonlinear stochastic
model consists of the terms of local infections and imported infections. next-generation matrix
(NGM) [234, 256], another concept drawn from epidemiology, has also been employed in disease
risk prediction, enhancing our understanding of infection dynamics. This matrix, similar to the
VCAP and EIR, originates from epidemiological models and characterizes the complex, non-linear
interactions between various epidemiological parameters. It is designed to track the evolution of
these parameters over successive time steps, thereby facilitating the forecasting of how a disease
might spread or change over time. Building on this concept, Liu et al. developed a multivariate
regression model that leverages the NGM of a vector-human compartmental framework at the
meta-population level. This model aims to assess and predict malaria risk by integrating hetero-
geneous risk-related factors, including climate variability, socio-economic conditions, land cover
distribution, mosquito populations, and demographic data [97]. Based on the domain knowledge of
malaria transmission, some epidemiological parameters, such as the latent period of parasites in
vectors, daily biting rate, and mosquito death rate, can be calculated by the disease-related factors
(e.g., temperature and rainfall). Meanwhile, other parameters that are unknown and subject to
change over time and space—such as mosquito density and transmission efficiency—are dynamically
inferred as the model is trained, allowing for a more accurate prediction of malaria risk.

D.3.2  Network Inference. Wang et al. introduced an approach called power-law degree and data
priori jointly regularized non-negative network inference (D?PRI), which is built upon a SIR
model at the meta-population level [182]. This approach treats interactions between infected
individuals across various locations as a transmission process over a disease propagation network
and formulates the parameter inference of edge weights in the network and the disease transmission
rate in the SIR model as an integrated network inference problem. Moreover, the model includes
regularization terms that are informed by prior knowledge of network structures—such as the
power-law distribution of node degrees and data derived from human mobility patterns—to guide
the parameter estimation. Similarly, Prasse et al. also formulated the prediction of COVID-19
outbreaks across multiple cities as a network inference problem. Their network-inference-based
prediction algorithm (NIPA) is grounded in a meta-population level SIR model and aims to estimate
infection rates within the contact network and the recovery rates for different cities [128].

D.4 Epidemiological Regularization and Constraints for Optimization

D.4.1 Bayesian Inference. Osthus et al. introduced a dynamic Bayesian (DB) influenza forecasting
approach that models discrepancies between simulations from epidemiological models and real-
world observations [120]. This approach considers that prediction uncertainties are not solely
attributable to observational errors and, therefore, models a wILI as the sum of three items: the
logit of the infections that are described by the SIR model, a common discrepancy item for all
influenza seasons, and a specific discrepancy item for each influenza season. Watson et al. proposed
to integrate the epidemiological model, Bayesian velocity model, and random forest into a single
model to predict the COVID-19 dynamics [195].
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D.4.2 RNNs. Wang et al. [184, 185] proposed an epidemic prediction framework, named deep
learning based epidemic forecasting with synthetic information (DEFSI), to conduct short-term
and high-resolution ILI incidence prediction. The novelty of DEFSI is that it generates fine-scale
ILI incidence data from an agent-based simulator (EpiFast) of an SEIR model, whose transmission
parameters are estimated from the surveillance data. The obtained synthetic data are used to train a
two-branch LSTM model to capture the within-season and between-season temporal dependencies
of the incidence trends, and the model outputs are merged to generate final predictions. Bousquet
et al. used the LSTM model to estimate the time-varying contact rate and deceased rate of the SIRD
model [20]. Wang et al. proposed the Neural-SEIR framework, which also utilizes the LSTM model
to capture the temporal patterns and predict key epidemiological parameters of the SEIR model
[181]. LSTM-CA model proposed by Wang et al. used the cellular automaton (CA) to model the SEIR
in a grid/spatial manner and used LSTM to capture the temporal patterns of disease transmission
and predict the dynamics for each cell to calculate the infectious rate, recovered rate, and death
rate [186].

D.4.3 Mixed Deep Learning Modules. Cao et al. proposed the metapopulation epidemic graph
neural networks (MepoGNN), which combines the meta-population (rather than the population-
level) SIR model and GNNs to predict multiple regions’ disease dynamics [26]. There are two
modules in the proposed model: the spatial-temporal module that uses the temporal convolutional
network (TCN) and GCN layers to encode the spatial and temporal hidden patterns and estimate
the time-varying epidemiological parameters, and the metapopulation SIR module to calculate the
disease dynamics with the epidemiological parameters and differential equations. By designing
the meta-population SIR model, they consider the disease transmission between different regions
explicitly. Similarly, the epidemiology-aware deep learning framework proposed by Liu et al.
also incorporates meta-population SIR models as the constraints of the objective function [96].
Different from [26], which uses the ODEs directly, Liu et al. formulated the next-generation matrix
(NGM) of the meta-population SIR models to predict the new infections with the epidemiological
parameters and designed the epidemiological loss. In the deep learning part, they used the spatial
module to learn the dependency between regions and the temporal module to infer the changing
epidemiological parameters.

D.4.4 EINNs. Torku et al. proposed the stochastic epidemiology-informed neural network (SEINN)
model to capture the hidden patterns of disease transmission by estimating the parameters and
states of SIR models with neural networks [173]. Oluwasakin and Khaliq integrated the PINN with
logistic models to propose the logistics-informed neural network (LINN) algorithm. This method
is specifically tailored to predict the infection dynamics of the COVID-19 virus variant, Omicron. It
can learn the time-varying transmission rate from the daily and cumulative number of cases [117].

D.5 Pure Machine Learning Models for Temporal Autocorrelation Analysis

D.5.1 Classical Machine Learning. Nsoesie et al. developed the Dirichlet process (DP) to classify
and predict the influenza curves [115]. The DP model can cluster the current time series of influenza
activity with similar simulated and historical time series while identifying the different patterns
compared to the current time series; then it can utilize this information to make predictions. Saqib et
al. introduced a hybrid model that combines polynomial regression with Bayesian ridge techniques
[150]. This model utilizes an n-degree polynomial to model the relationship between historical
data and future predictions, capturing the underlying trends with a flexible curve. Concurrently, it
refines the estimation of parameters through Bayesian ridge regression, which treats predictions not
as fixed values but as probability distributions. Another representative technology, the GP, has also
been effectively utilized to model the dependencies within time series data [77, 225]. Zimmer and
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Yaesoubi developed a GP-based framework explicitly tailored for forecasting seasonal epidemics
[225]. Their approach differs from that of Senanayake et al. [155], who designed kernels to capture
both spatial and temporal dependencies. Instead, Zimmer and Yaesoubi focused on designing kernels
for characterizing the temporal dependencies between within-seasonal and between-seasonal time
series. In a separate work, Ketu et al. introduced a multi-task gaussian process (MTGP) regression
model that operates with dual input-output configurations: the historical series (past observations)
and the reference series (a combination of past observations and future points to be predicted). This
model enhances the correlation between these series by employing an improved kernel matrix,
thereby refining the forecasting process [77]. Wang et al. combined the Logistic growth forecasting
model with the Prophet model, which is a machine learning model developed by Facebook’, to
predict the epidemic trend of COVID-19 [188]. Empirical Bayesian is also used to model the temporal
characteristics. In contrast assigning a pre-defined prior distribution to the parameters of a model
(i.e., a distribution that is irrelevant to the observational data), empirical Bayesian models usually
estimate prior distributions from historical observations. A typical example is the semiparametric
empirical Bayes framework for epidemic modeling proposed by Brooks et al. [22]. This framework
first estimates the prior, i.e., the shape of the ILI curve, the noise, the peak height, the peak week, and
the pacing, using a set of uniform distributions over the historical observations. It then generates
the underlying ILI curve of the current ILI season by linearly adjusting the piecewise quadratic
curves of historical seasons using the current year’s CDC baseline weekly ILI level. In addition,
the classic Kalman filter also has been applied to the forecasting of COVID-19 confirmed cases by
Singh et al. [165].

D.5.2  RNNs. Gupta et al. implemented a straightforward deep learning architecture with two
LSTM layers to predict the numbers of confirmed cases and deaths [62]. Kolozsvari et al. used an
encoder—decoder structure with LSTM units to predict the new cases of the first wave of COVID-19
in several countries [83].

D.5.3 Other Deep Learning Models. Dash et al. introduced the NeuralProphet (NP) model [39],
which features the deep auto-regressor neural network (Deep-AR-Net), which is implemented by
simple NN with multiple neurons, to improve upon the prediction capabilities of the original Prophet
model developed by Facebook. Prophet is an additive model that accounts for trends, seasonality, and
holiday effects in its forecasts. The Deep-AR-Net, integrated within the NeuralProphet framework,
comprises two neural network modules: an auto-regressor (AR) and a lagged-regressor (LR). These
modules are specifically designed to deal with complex and nonlinear dependencies and irregular
patterns that are often present in infectious disease data, thereby enhancing the model’s predictive
performance. Dong et al. proposed the dendritic neural regression (DNR) method, which is a type of
artificial neural network model inspired by the dendritic structure of biological neurons, to predict
COVID-19 dynamics [45]. The difference between it and traditional neural networks is that it uses
a multiplication operator to capture the nonlinear relationships between input feature signals in
the dendrite layer.

D.6 Correlated Signals of Disease Dynamics

D.6.1 Web-based Activity. Yang et al. utilized GET data to devise the autoregression with Google
search data (ARGO) method for influenza epidemic estimation [205]. They obtained the search
terms that are strongly correlated with the ILI from Google Correlate® (which stopped providing

https://github.com/facebook/prophet. Accessed February 13, 2025
8www.google.com/trends/correlate/. Cannot be accessed on March 25, 2023
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data after March 28, 2015) and search trends from Google Trends’, and then used these data as
input for an ARX model. Kandula et al. also used Web-based search activity data from GET to
nowecast ILI dynamics at subregional geographic scales (i.e., state-level) [73]. They formalized
strongly correlated query terms for a specific region in a period as explanatory variables and used
them to train an ARIMA model to predict the response variable (i.e., ILI observations). Then, they
treated the forecast of the ARIMA model as an additional explanatory variable and used it with the
original explanatory variables to train a random forest model for making final predictions of the
response variable. Gonzalez et al. merged the outputs of feed forward neural network (FFNN), sum
of sines (SoS), and smoothed endemic channels by a linear equation to predict acute respiratory
infection (ARI) based on key terms in the Google search engine as well as the historical ARI data
[60]. Schneider et al. applied a Lasso regression model based on Google search queries to predict
the ILI rates in the Netherlands [153]. Similar search query data from Baidu'’, one of the largest
search engines in China, was used by Yuan et al. to monitor influenza case counts in China [208].
They also used a multiple regression model to predict case counts based on the previous case count
and a composite index of searches. Dai et al. explored the use of the deep learning architecture, i.e.,
an attention-based LSTM model, on the Baidu Index series data to predict the influenza risk [38].

D.6.2 Multi-type Data.

Classical machine learning models. Wang et al. utilized the signals from symptom search trends,
Google mobility data, and COVID-19 vaccination coverage as the input of a dynamic supervised
machine learning algorithm based on log-linear regression, aiming at predicting the COVID-
19 cases in the UK [190]. Diao et al. proposed a GLM based on Poisson and negative binomial
regression models to predict the malaria risk by considering the effects of the climatic variables and
interventions, together with the historical malaria incidence [43]. Ciaccio et al. categorized a set of
heterogeneous features into two groups—static and dynamic variables—based on their inherent
characteristics [35]. Initially, they trained partial least squares regression models (PLSR) with these
static variables, such as countries’ general health and healthcare situation, and dynamic variables,
such as climate and non-pharmaceutical interventions, to determine their individual contributions
to country-level mortality. Subsequently, they applied a rolling-window Elastic Net regression
model, utilizing the variables identified as most significant, to predict mortality for the upcoming
60 days.

Deep learning models. Kiang et al. utilized the meteorological and environmental data, e.g., rainfall,
temperature, relative humidity, and vegetation index, as well as disease dynamic data, i.e., the malaria
cases, to predict the malaria risk [79]. They used a simple neural network structure, MLP, to model
the correlations between the disease-related factors and the disease dynamics. To evaluate the fine-
grained dengue risk, Liu et al. collected the street-view images as environmental features of urban
and processed them by a pre-trained CNN [95]. These environmental feature vectors were then fused
with other features (e.g., temperature, rainfall, and past case count), together serving as the input
data, to make dengue risk forecasting by MLP and SVM. Eltoukhy et al. developed a NARX model to
deal with multiple types of data, including the dynamics data, such as case and death data, as well as
the external factors, such as population, median age index, healthcare expenditure, and air quality
[49]. Said et al. collected a range of indicators of demographic, socioeconomic, and health situations
and used the K-Means clustering method to group countries with similar profiles based on these
indicators [148]. For each cluster of countries sharing comparable characteristics, they constructed
the multivariate time series data, including the temporal data of lockdown strategies and the

%https://trends.google.com/trends/. Accessed February 13, 2025
10https://index.baidu.com/. Accessed February 13, 2025
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historical COVID-19 dynamics, and adopted the Bi-LSTM network to predict the daily cumulative
COVID-19 cases. Rashed et al utilized meteorological data and the estimation of human mobility
available from Google and NTT DoCoMo, Inc. in Japan, and developed a deep learning algorithm
that consists of multi-path LSTM layers to predict COVID-19 dynamics [136]. Amendolara et al.
used climate data (temperature and precipitation), local wind speed, demographic data (population
size), and intervention data (vaccination and vaccination efficacy), as well as the historical ILI data,
to predict the ILI dynamics with the Bi-LSTM network [9]. Yang et al. combined the attention
mechanism and an LSTM model to propose the multiattention-LSTM deep-learning (MAL) model
to fuse the heterogeneous data of historical ILI risk, virological surveillance, climate, demography,
and search engines activity to predict the ILI risk [204]. De Oliveira et al. developed a predictive
model based on stacked auto-encoders for forecasting COVID-19 trends [40]. This model integrates
multivariate time series data, which includes not only the recorded COVID-19 cases and deaths but
also environmental factors such as temperature, humidity, and air quality index.

D.7 Uncertainty Quantification

Ghoshal and Tucker proposed Bayesian convolutional neural networks (BCNNs) utilizing Monte-
Carlo dropweights [57]. This approach has been applied to assess the confidence in model predictions
for chest X-ray images, a crucial step in the diagnosis of COVID-19. Shamsi et al. introduced a
deep learning framework that incorporates uncertainty-aware transfer learning, designed for the
classification of chest X-ray and Computed Tomography (CT) images [160].

D.8 Model and Prediction Robustness

Cheng et al. used the stacking technique to ensemble four machine learning models—ARIMA,
RF, support vector regression (SVR), and extreme gradient boosting—to predict the weekly ILI
dynamics [32]. Yakovyna et al. introduced a supervised-unsupervised ensemble model based on
stacking, which clustered the input data with many heterogeneous features and selected important
features using the Boruta, decision tree, and RF models before applying a stacked ensemble of
various algorithms [202].

Zhang et al. proposed the random-forest-bagging broad learning system (RF-Bagging-BLS)
approach, which employs RF to weight and select key features, and utilizes bootstrap strategies
to randomly sample the selected features to train multiple BLS prediction models [210]. Cui et
al. suggested a two-layer nested heterogeneous ensemble learning method, which first trains the
individual models with different types by using the sampling data from bootstrapping and then
ensembles them for predicting COVID-19 mortality [36]. Galasso et al. used an RF regression model
to predict the COVID-19 cases, which aggregates the output of multiple tree-based estimators
trained based on a subset of the randomly sampled input features [52].

E FORMULATIONS IN INFECTIOUS DISEASE RISK PREDICTION
E.1 Problem Statement

In the task of predicting infectious disease risks, given observations of disease dynamics-related
data x, a common goal of machine learning approaches is to train a model f to accurately predict
the future disease dynamics y in one location or multiple locations using historical data:

y=f(x). (S4)
Usually, x denotes the model input, and it could be the historical data of the indicator of disease
risks, such as the disease case number or disease prevalence. In some circumstances, it could also
include other risk-related data, such as climate data, mobility data, and population data, to enhance
the prediction performance. y is the model output, i.e., the future risks to be predicted, which is
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usually the indicator of infectious disease risks. In general, in the temporal dimension, the input
and output could cover one time step or multiple time steps; in the spatial dimension, the input
and output could cover one location or multiple locations. In the following content, we use x to
denote the model input, y to denote the model output, and we do not make assumptions on their
dimensions. We use f to denote the general format of model’s prediction functions; the specific
formulations of them depend on the used model structures in different works.

E.2 Formulations of GLMs

The general formulation of GLMs is given as follows [42]:

T —A T
Lzﬁvﬂmgh(y,(,z) , (s5)

p(ylx,w,o%) = exp
where y denotes the response variable to be predicted, x denotes the input feature vector used
to predict y, w denotes the weighting parameter vector on x, o2 represents the dispersion term,
A(-) represents the log normalizer, h(-, -) represents the base measure, and exp[-] denotes a given
probability distribution from the exponential family. Furthermore, there is a mean function g~! that
maps w! x to the mean value of the response variable: u = g~!(w’ x) [248]. Based on the distribution
selected for modeling the data, the mean function varies accordingly, such as y = exp(w’ x) for

Poisson distribution, p = wlx for Gaussian distribution, and B= 1 for Bernoulli distribution.
e wh x

E.3 Formulations of GP

The GP models assume that the random variable f(x;) in continuous domains (e.g., time or
space) follow a Gaussian distribution with the mean y = m(x;) and the variance o;, and that
the joint distribution of a finite set of these variables f = [f(x1),---, f(xp)] will follow the
multivariate Gaussian distribution with the mean g = [m(x;),- -, m(xp)] and the covariance
X = K(xi,x;)(i, j = 1, -+, M), where the K is the kernel function and M is the number of observa-
tions [19][248]. In GP models, given the training set X = {xy, -+, xp}, we have fy, ~ N (uy, Kx x),
where Kx x is the M XM covariance matrix of the data set X. Given a test set X., the joint distribution
P(fx fx |X X,) is represented as follows:

Al e k)
~N , ’ ’ . S6
( fx, Bx, Kix, Kxx (S6)
The covariance of these variables is calculated by choosing the appropriate kernel function K, -)
and is used to describe the characteristics of processes.

E.4 Loss Function of Deep Learning Optimization

In our survey, for the simplicity of notations, we use 4 = f3(x, 0;) to represent the prediction of y4
from the input feature x via a non-linear function of the deep learning model f;. Here the f; could
be specified by any DNN model structure, and the 6 denotes the corresponding model parameters.
Generally, 6, is optimized (over the parameter space ©,) using the following loss function:

arg erneig L4(04) (S7)
Li(04) = (G4, ya) = £(fa(x,04),ya), (S8)

where L is the predictive loss, quantified by the difference between the model prediction g and
the ground truth label y4. In the disease risk prediction task, various distance metrics could be used
to measure the difference, such as the £;-norm loss (mean absolute error) or £;-norm loss (mean
squared error).
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E.5 Formulations of Data Assimlation

The SIRS-EAKF framework can estimate the posterior of probabilistic distributions of system
states (i.e., susceptible populations S; and infected populations I;) and epidemiological parameters
(e.g., the mean infectious period D, the average duration of immunity L, and the maximum and
minimum of daily basic reproductive number Ry,qx and Rymayx) in the used SIRS model. In [156],
Shama et al. represented model states and epidemiological parameters by a set of variables Z; =
(St, It, Romax> Romins L, D). Then the posterior of Z; can be represented as follows:

P(ZeYe, yr-1,- ) < p(yelZ)p(Zelye-1, -+ +)s (89)

where the first term on the right-hand side is the likelihood of observational disease risk given
states and parameters, while the second term is the prior distribution of the states and parameters.
For KF, these two terms are assumed to be Gaussian distributions; in contrast, for PF, these two
terms are not under these assumptions.

E.6 Loss Function of Epidemiological Parameterization

The general formulation of the loss function for the difference between states simulated using
epidemiological models and the ground truth of these states can be represented as follows:

Le(8e) = €(9,.y,) = £(fe(0c, 50). Y.), (S10)

where 0, (in the parameter space ©.) denotes epidemiological parameters (e.g., contact rate and
recovery rate) in a given epidemiological model, y, denotes the ground truth of the target variable
(usually are model states with records, e.g., infected case number and death number), §, denotes
predictions on the target variable, sy denotes the initial value of model states, and f. denote the given
epidemiological model, which is generally described by an ODE. With such an ODE representation,
1, can be calculated using model parameters and initial values. Given the above loss function, the
optimal model parameters can be inferred by minimizing the loss:

ée =arg emelg L:(0,). (S11)

E.7 Loss Function of Epidemiological Regularization and Constraints

The general formulation of the loss function for models on the type of epidemiological regularization
and constraints is shown as follows:

L=Ly(04)+ Lc(0,) = t(Ta,ya) + (Y. Y,), (812)

where L; denotes the prediction loss to ensure the prediction accuracy of the deep learning model,
and L, denotes the epidemiological-constrained loss. The approaches to introduce £, vary in
different works.

E.8 Equations for Model Performance Evaluation

The following indicators, the RMSE (Eq. S13), MAE (Eq. S14), MAPE (Eq. S15), and RMSPE (Eq. S16),
calculate the deviation of predicted values Y* from ground truth Y, where Y, and Y; denote the
predicted value and the ground truth at time step ¢, respectively.

T
1
RMSE = | = > (%-v) (S13)
t=1
1 T
MAE = — ; Y, - Y7 (S14)

ACM Comput. Surv., Vol. 37, No. 4, Article 111. Publication date: August 2025.



Machine Learning for Infectious Disease Risk Prediction: A Survey 111:51

IYt - Yt*l
MAPE = [max ———— | * 100 (S15)
t Y,
T %\ 2
1 Y, -Y,
RMSPE = —Z L (S16)
r= Y

For CORR (Eq. S17), Y* and Y denote the mean value of the predicted trend and the real trend,
respectively, during the time slot from 1to T.

Ly (- 7) (- 7))
CORR = (S17)
VEL (% - 1)L, (17 - )’

The CS is the integral of ||kas(c) — c|| over ¢ from 0, - - - , 1 (Eq.S18). Thereinto, kps(c) denotes
prediction interval coverage which calculating the percentage of observed values falling into the ¢
(i-e., 50% or 95%) confidence interval of predicted distributions of M.

1
CS(M) = /0 lk(e) —cll ~0.01 > [lkw(c) ~c] (s18)

c€{0,0.01,---,1}

F ADDITIONAL TABLES

In this section, we present extended tables that supplement Table 1 and Table 2 from the main
text. Specifically, Table 3 is the extended version of Table 1, which summarizes each work related
to capturing the temporal autocorrelation and spatial dependency of infectious disease risk, with
a particular emphasis on their machine learning components. Due to the substantial expansion
of Table 2, we have divided it into two separate tables: Table 4 and Table 5. These tables sum-
marize each work in terms of their targeted diseases, epidemiological components, and machine
learning components, specifically focusing on the epidemiological parameterization models and
epidemiology-embedded learning models, respectively.
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Table 3. Summary of spatiotemporal dependency learning models.

Categories ‘ References Machine learning components

Matrix factorization and Matrix factorization based regression using nearest neighbor

network

‘ nearest neighbor ‘ (29] ‘ embedding
Traditional ‘ Generalized linear models ‘ [215] ‘ Poisson regression
machine R . . - -
learning ‘ Gaussian ‘ (194] ‘ Dynamic Poisson autoregriis;i\;i i‘:;)del with exogenous inputs
process
‘ ‘ [155] ‘ GP with spatial and temporal kernel
170 ierarchically stacke
Hi hically stacked RNN
‘ RNN ‘ [177] ‘ Sequentially stacked LSTM
| | [114,132] | Multi-variate LSTM
(176] K-means for grouping time series data with similar patterns
and LSTM for temporal prediction
‘ ‘ [75] ‘ GNNs with spatial and temporal connections
‘ GNN ‘ [51] ‘ Distributional regression and GNN
| | 5] | GCN combining with GFT and DFT
‘ ‘ [197] ‘ CNN (spatial), RNN (temporal), and residual link
Deep learning [200] Multi-scale convolutions with attention mechanism (spatial)
and LSTM (temporal)
‘ ‘ [175] ‘ CNN (spatial) and GRU (temporal)
(41] Dilated convolution and RNN (temporal) and GNN with
Mixed d attention matrix (spatial)
ixed deep -
| modules | [221] | LSTNet/N-Beats (temporal) and GAT (spatial)
| | [72] | Functional neural process
‘ ‘ [108] ‘ Temporal attention layer and GAT
‘ ‘ [17] ‘ GNN module with attention mechanism
‘ ‘ [199] ‘ Multi-scale convolutions (temporal) and GNN (spatial)
[152] Temporal gated convolutional layer, spatial graph
convolutional layer, and multi-head attention mechanism
‘ ‘ [224] ‘ Dilated convolution, RNN, and GAT
| | D91 GFT, DFT, and GRU
LSTM and IDEC to encode and cluster the temporal
[3] P
Encoder- dependency respectively
decoder -
| | 74 | CAE with LSTM
‘ Unsupervised learning ‘ [98] ‘ Matrix profile and attention-based LSTM
‘ Self-supervised learning ‘ [94] ‘ Message passing neural network
Multi-task learnin, 198 Online multi-task regression
g g
Other machine - - —
learning ‘ Factorization machine ‘ [135] ‘ Embedding module for various features and deep factorization
techniques machines
Neural autoregressive [7] Dynamic neural network and ARX
model
‘ Intermediate fusion ‘ [123] ‘ LSTM, IFNs, and attention mechanism
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Table 4. Summary of epidemiological parameterization models.

Categories ‘ Ref. ‘ 3?:5:::3 ‘ Epc i:;:;:::fti:al ‘ Machine learning components
‘ [156, 157] ‘ Influenza ‘ Humidity-driven SIRS model ‘ EAKF/PF
‘ [206] ‘ Influenza ‘ SIR model ‘ KF/PF
‘ [126] ‘ Influenza ‘ Corﬁ?ﬁﬁfiﬁtﬁz del ‘ EAKF/PF
‘ [209] ‘ Dengue ‘ Metapopulation network ‘ EAKF
| [154] | cCOVID-19 | SIRD \ EKF
‘ [47] ‘ Influenza ‘ SEIR ‘ State-space framework and PF
‘ [172] ‘ A/HIN1 ‘ GLEaM ‘ Monte Carlo maximum likelihood analysis
‘ [212] ‘ Influenza ‘ GLEaM ‘ Monte Carlo maximum likelihood analysis
Epidemiological ‘ [226] ‘ COVID-19 ‘ SuEIR ‘ Loss function with logarithmic-type MSE
parameter | [168] | COVID-19 | D-SEIQ | Loss function with MSE
inference from ‘ [189] ‘ COVID-19 ‘ Spatiotemporal-SuEIR ‘ AutoODE
data | [3] | covib-19 | TW-SIR | Loss function with MSE
| [217]1 | cCoOvID-19 | SEIR | Logistic model
| [191] | coviD-19 | SEIAR \ GBM
‘ [24] ‘ COVID-19 ‘ SEIRD ‘ Ensemble method based on bagging scheme
| [109] | cCOVID-19 | Networked SEIR \ LASSO
‘ [86] ‘ COVID-19 ‘ Covasim ‘ Optuna optimizer
| [2200 | coOvVID-19 | IS | Pretrained NLP module and LSTM
| [9 | coviD-19 | SIR and SIRD | GCN and LSTM
| [211] | cCoOVID-19 | SIQR | LSTM
‘ [78] ‘ COVID-19 ‘ m-SIQRD ‘ Attention based parameter estimation
‘ [50] ‘ COVID-19 ‘ Time-varying SEIR ‘ GRU
| [13] | coviD-19 | SIRD | LSTM and VAE
| [44 | coviD-19 | ISI | LSTM
| [9 | coviD-19 | SIR | FNN
| [w00] | cCoOVID-19 | SIRV | NAR, LSTM and statistical methods
Epidemiological | [12] | coviD-19 | Improved SEIR model | Generalized additive model
parameters ‘ [14] ‘ COVID-19 ‘ Stochastic SIR process ‘ Mixed effects model
modeling ‘ [23] ‘ COVID-19 ‘ SIR model ‘ Mixed-effects model and GP
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Table 5. Summary of epidemiology-embedded learning models.
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